A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan

نویسندگان

  • Xiaochang Pan
  • Ke Liu
  • Jing Bai
  • Jianwen Luo
چکیده

BACKGROUND In ultrasound elastography, reconstruction of tissue elasticity (e.g., Young's modulus) requires regularization and known information of forces and/or displacements on tissue boundaries. In practice, it is challenging to choose an appropriate regularization parameter; and the boundary conditions are difficult to obtain in vivo. The purpose of this study is to develop a more applicable algorithm that does not need any regularization or boundary force/displacement information. METHODS The proposed method adopts the bicubic B-spline as the tissue motion model to estimate the displacement fields. Then the estimated displacements are input to the finite element inversion scheme to reconstruct the Young's modulus of each element. In the inversion, a modulus boundary condition is used instead of force/displacement boundary conditions. Simulation and experiments on tissue-mimicking phantoms are carried out to test the proposed method. RESULTS The simulation results demonstrate that Young's modulus reconstruction of the proposed method has a relative error of -3.43 ± 0.43% and root-squared-mean error of 16.94 ± 0.25%. The phantom experimental results show that the target hardening artifacts in the strain images are significantly reduced in the Young's modulus images. In both simulation and phantom studies, the size and position of inclusions can be accurately depicted in the modulus images. CONCLUSIONS The proposed method can reconstruct tissue Young's modulus distribution with a high accuracy. It can reduce the artifacts shown in the strain image and correctly delineate the locations and sizes of inclusions. Unlike most modulus reconstruction methods, it does not need any regularization during the inversion procedure. Furthermore, it does not need to measure the boundary conditions of displacement or force. Thus this method can be used with a freehand scan, which facilitates its usage in the clinic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Sonoelastography: Ultrasound Imaging of the Elastic Properties of Tissue

Certain pathological conditions, such as malignant tumours, manifest themselves as changes in the tissue's mechanical stiffness. This is the basis for palpation. Several techniques for imaging tissue elasticity using ultrasound have been proposed: compression elastography (strain imaging), transient elastography and vibration sonoelastography. The latter involves imaging of vibration patterns r...

متن کامل

Tracked Ultrasound Elastography (TrUE)

This paper presents a robust framework for freehand ultrasound elastography to cope with uncertainties of freehand palpation using the information from an external tracker. In order to improve the quality of the elasticity images, the proposed method selects a few image pairs such that in each pair the lateral and out-of-plane motions are minimized. It controls the strain rate by choosing the a...

متن کامل

3D Quasi-Static Ultrasound Elastography With Plane Wave In Vivo

In biological tissue, an increase in elasticity is often a marker of abnormalities. Techniques such as quasi-static ultrasound elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, as abnormalities can exhibit very heterogeneous shapes, a three dimensional approach would be necessary to accurately measure ...

متن کامل

3D Elastography Using Freehand Ultrasound

We present an elastography system using freehand 3D ultrasound. A review is provided of the standard elastography methods that have been adapted for this purpose. The scanning protocol is simple and promising results are presented of 3D strain images from freehand scans. Robustness is a problem, however, and the main sources of error are explained. Measures have been developed to improve the qu...

متن کامل

A method for vector displacement estimation with ultrasound imaging and its application for thyroid nodular disease

Ultrasound elastography is a promising imaging technique that can assist in diagnosis of thyroid cancer. However, the complexity of the tissue movements under freehand compression requires the use of a parametric displacement model and a specific estimation method adapted to sub-pixel motion. Therefore, the aim of this study was to develop a motion estimation method for ultrasound elastography ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014